Sunday, 2 August 2020

Different Types of Neural Network

0 comments

Neural Networks - NN

Topics to be covered:

In this topic we going to get a brief idea about NN-
            1.3 Different types of NN ?

1.3 Different types of Neural Networks ?

There are different types of Neural Networks available. The following are the types
        • Feedforward Neural Network- Artificial Neuron
        • Radial basis function Neural Network
        • Kohonen Self Organinzing Neural Network
        • Recurrent Neural Network
        • Convolutional Neural Network
        • Modular Neural Network

Feedforward Neural Network – Artificial Neuron:

        This neural network is one of the simplest form of ANN, where the data or the input travels in one direction. The data passes through the input nodes and exit on the output nodes. This neural network may or may not have the hidden layers. In simple words, it has a front propagated wave and no back propagation by using a classifying activation function usually. Below is a Single layer feed forward network. Here, the sum of the products of inputs and weights are calculated and fed to the output. The output is considered if it is above a certain value i.e threshold(usually 0) and the neuron fires with an activated output (usually 1) and if it does not fire, the deactivated value is emitted (usually -1).
Fig: Feedforward Neural Network
                                         

Radial basis function Neural Network:

        Radial basic functions consider the distance of a point with respect to the center. RBF functions have two layers, first where the features are combined with the Radial Basis Function in the inner layer and then the output of these features are taken into consideration while computing the same output in the next time-step which is basically a memory.

                                                    
        Above is a diagram which represents the distance calculating from the center to a point in the plane similar to a radius of the circle. Here, the distance measure used in euclidean, other distance measures can also be used. The model depends on the maximum reach or the radius of the circle in classifying the points into different categories. If the point is in or around the radius, the likelihood of the new point begin classified into that class is high. There can be a transition while changing from one region to another and this can be controlled by the beta function.
Fig: Radial basis Neural Network


Kohonen Self Organizing Neural Network:

        The objective of a Kohonen map is to input vectors of arbitrary dimension to discrete map comprised of neurons. The map needs to me trained to create its own organization of the training data. It comprises of either one or two dimensions. When training the map the location of the neuron remains constant but the weights differ depending on the value. This self organization process has different parts, in the first phase every neuron value is initialized with a small weight and the input vector. 

        In the second phase, the neuron closest to the point is the ‘winning neuron’ and the neurons connected to the winning neuron will also move towards the point like in the graphic below. The distance between the point and the neurons is calculated by the euclidean distance, the neuron with the least distance wins. Through the iterations, all the points are clustered and each neuron represents each kind of cluster. This is the gist behind the organization of Kohonen Neural Network.
Fig: Kohonen Self Organinzing Neural Network
               

        Kohonen Neural Network is used to recognize patterns in the data. Its application can be found in medical analysis to cluster data into different categories. Kohonen map was able to classify patients having glomerular or tubular with an high accuracy. 

Recurrent Neural Network(RNN)-Long Short Term Memory:

        The Recurrent Neural Network works on the principle of saving the output of a layer and feeding this back to the input to help in predicting the outcome of the layer. Here, the first layer is formed similar to the feed forward neural network with the product of the sum of the weights and the features. 

        The recurrent neural network process starts once this is computed, this means that from one time step to the next each neuron will remember some information it had in the previous time-step. This makes each neuron act like a memory cell in performing computations. In this process, we need to let the neural network to work on the front propagation and remember what information it needs for later use. Here, if the prediction is wrong we use the learning rate or error correction to make small changes so that it will gradually work towards making the right prediction during the back propagation. This is how a basic Recurrent Neural Network looks like,
Fig: Recurrent Neural Network
                                                      

CNN (Convolutional neural network):

        Convolutional neural networks are basically applied on image data. Suppose we have an input of size (28*28*3), If we use a normal neural network, there would be 2352(28*28*3) parameters. And as the size of the image increases the number of parameters becomes very large. We “convolve” the images to reduce the number of parameters (as shown above in filter definition). As we slide the filter over the width and height of the input volume we will produce a 2-dimensional activation map that gives the output of that filter at every position. 
Fig: Convolutional Neural Network


Modular Neural Network:

        Modular Neural Networks have a collection of different networks working independently and contributing towards the output. Each neural network has a set of inputs which are unique compared to other networks constructing and performing sub-tasks. These networks do not interact or signal each other in accomplishing the tasks. The advantage of a modular neural network is that it breakdowns a large computational process into smaller components decreasing the complexity. This breakdown will help in decreasing the number of connections and negates the interaction of these network with each other, which in turn will increase the computation speed. However, the processing time will depend on the number of neurons and their involvement in computing the results.
            
Fig: Modular Neural Network
                                                           

No comments:

Post a Comment

If you have any doubts, please let me now